CAD Tech News (#109)
14 Aug, 2019 By: Alex Herrera▶ Herrera on Hardware: Who Is Using Workstations, and Why?
CAD is the primary driver of today's professional graphics hardware market, but not the only one. See how CAD users' workstation needs compare to those of software engineering, digital media, geoscience, and other professionals.
By Alex Herrera
In stark contrast to the mainstream consumer and corporate PCs that make up the broader computer markets, workstations continue to thrive. While the former struggles with contracting volume and waning demand, workstation sales continue to climb, outpacing not only PCs overall but GDP by a significant margin.
The broader PC market's troubles stem from headwinds conspiring to depress demand for new machines. Simpler alternative devices, such as smartphones and tablets, have captured the minds of more casual consumers who find them adequate for minimal-demand applications like e-mail and web browsing. But more than that, what's softening PC demand is the simple fact that many mainstream users can now go longer between machine replacements than ever before — much longer. If your four-year-old machine is doing the job just fine, you can forget the expense and hassle of buying and setting up a new machine every 18 months.
For workstations it's a whole different story, one that benefits both the suppliers and users. The majority of professionals in manufacturing, design, architecture, and construction need the application-tuned performance and reliability of a workstation, and their insatiable demand for computation and visualization continues to justify a more frequent upgrade cycle (two to three years, on average). Unlike the mainstream market, the workstation's traditional professional customer base continues to realize a positive return on investment (ROI) when upgrading to a newer model that completes their current modeling, simulation, and rendering tasks more quickly, along with support for the latest features exploiting developing technologies, like ray tracing or machine learning.
But while other professionals share the benefits that come with today's wide breadth in workstation offerings, CAD users tend to reap the most rewards — and for a simple reason. While workstations serve all kinds of computing spaces, including digital media and entertainment (DME), finance, geoscience, and medical applications, CAD accounts for significantly more workstation sales than any other, with nearly half of total sales. And given its relative dominance, vendors tend to spend more time and dollars optimizing products for CAD than any other application. Still, it's worth understanding who else out there is buying these things, why, and how different applications, priorities, and workflow all contribute to the evolving DNA of the modern workstation.
![]() Workstations serve a range of professional client computing markets, but none bigger than CAD. Data source: estimates by Jon Peddie Research. |
Digital Media and Entertainment Can Demand More Than CAD
When it comes to professional graphics applications, digital media and entertainment (DME) might come in behind CAD in volume (at around 15–20%), but the category is certainly first in mindshare. Responsible for everything from Hollywood computer-generated imagery (CGI) to the hottest 3D games, DME artists and animators look to workstations to provide the optimal balance of price, reliability, and most importantly, performance and compatibility with their mission-critical applications like 3ds Max, Maya, Houdini, Blender, and LightWave 3D.
Generally speaking, while DME pros rely heavily on much of the same hardware — fast, multi-cored CPUs and high-performance graphics processing units (GPUs) for modeling and 3D visualization — their content and workflows can also put more stress on system components than typical CAD users might. Producing studio-quality CGI, for example, will typically entail working with ultra-fine-grained geometry, meaning there are millions of polygons per scene to process instead of thousands. While CAD users will often appreciate photo-quality renderings, for DME types it's more often a must-have, so all that finer-grained geometry will get lit and shaded with more esoteric, physically accurate models. And since artists are going to great lengths to dial up the geometry detail, they're not going to tolerate lackluster textures ruining the effect. So for multiple channels of ultra-high-resolution texture, for example, it can take hundreds of gigabytes of texture — far more than typical manufacturing or architectural models would ever require — just to bring a single character to life.
Even rendering that's not intended to be photorealistic might vary between DME to CAD applications. Where an architect may be looking for sketch-style rendering to use in early conceptual visualizations, an artist or animator might employ 2D toon-style graphics. Fortunately, while the shading algorithms will differ, a workstation-caliber graphics drive from a vendor like NVIDIA or AMD will optimize for both.
Common usage for DME and CAD doesn't end with rendering of the scene, because just as lighting and shading techniques have grown more complex — and more compute-intensive — so too have the methods used to create physically accurate animation. Characters exhibit true-to-life motion, water flows and smoke rises naturally, hair and grass bends with the wind, collisions and explosions are realistic. In that sense, DME animation tasks exploit much of the same workstation functionality as fluid dynamic simulations would in engineering simulations for analyzing turbulence from an airplane wing.
![]() Particle and fluid simulation represent overlap between DME and CAD visual computing. Image source: NVIDIA. |
Software Engineering's Demands Are Less Visual
Software developers, who make up about one-tenth of all workstation buyers, share some of the same motivations as CAD users — but with one significant difference. While some buyers might place special value on the workstation's prowess in 3D graphics and rendering, others have no visual computing demands at all. Rather, their goal is to secure other hallmarks of workstations, like scalability and reliability. A workstation purchased to develop database software, for example, might be configured to the hilt with CPU cores, memory, and storage, but end up paired with a relatively wimpy GPU — unlikely to compare to a machine dialed for the typical CAD workflow, but perfectly equipped for the software engineer's needs. Read more »
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Alex Herrera is a consultant focusing on high-performance graphics and workstations.

AutoCAD Video Tips: Fine-Tune the Block Palettes in AutoCAD 2020
After covering the Block Palette essentials in her previous tip, Lynn's ready to dive deeper this time around. Join her as she covers some extra tips that will help you fine-tune your block palettes to work the way you want to work! Watch the video »
Promoting Safety and Sustainability in the Additive Manufacturing Process Chain
The CEO of Additive Manufacturing Technologies discusses the importance of post-processing solutions that take human and environmental safety into account. Read more »
Holographic Workstation Gives HMD Haters a New 3D Visualization Option
For design teams and other groups, a desktop holographic display is more practical than head-mounted virtual reality solutions, according to the Looking Glass Factory. Read more »
AMFG Report Provides Insight into 3D Printing Service Bureau Market
Based on an industry-wide survey of additive manufacturing service bureaus, the report describes a highly competitive, fast-growing market that's providing customers with more choices of potential manufacturing suppliers. Read more »
PTC's Heppelmann Maps Out AR Strategy for Enterprise
To determine the best approach for any particular augmented reality (AR) use case, enterprises should start by answering questions about their strategy, their content, and how they'll deliver it. Read more »
For Mold Designers! Cadalyst has an area of our site focused on technologies and resources specific to the mold design professional. Sponsored by Siemens NX. Visit the Equipped Mold Designer here!
For Architects! Cadalyst has an area of our site focused on technologies and resources specific to the building design professional. Sponsored by HP. Visit the Equipped Architect here!